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Abstract — An efficient multivariate adaptive sampling
algorithm based on rational interpolation, that establishes
accurate surrogate models of microwave circuits, is
presented. The technique optimally samples the parameter
space in order to minimize the number of CEM analyses,
without assuming any a priori knowledge of the data. The
technique is evaluated on passive microwave structures.

1. INTRODUCTION

Microwave design incorporating optimization, Monte
Carlo analysis or statistical CAD, relies on fast and
accurate analyses or models of physical structures to be
effective. Computational electromagnetic (CEM) analysis
techniques normally provide high accuracy at the expense
of computational effort, while circuit models are
computationally very effective, but lack wide-band
accuracy. Surrogate mathematical models, directly fitting
data from CEM simulations, offer fast and accurate
solutions to this problem, and are increasingly used in the
design of microwave components.

Surrogate interpolation models require only storage of
the interpolant coefficients, and in addition normally
require smaller data sets than either neural networks or
look-up tables to establish a model. While polynomial
interpolants are often used, rational functions yield better
results for functions containing poles or for meromorphic
functions [1]-[9]. Polynomial interpolation is prone to wild
oscillations and an acceptable accuracy is sometimes
achieved only by polynomials of intolerably high degree
[10], [11].

The extension of univariate interpolation to multivariate
interpolation is not trivial since a large degree of freedom
in the choice for the numerator and denominator
polynomials exists. Only a few multivariate sampling
algorithms have been published. In [9] the authors use a
rectangular grid of support points and recursive univariate
interpolation  to  establish the  multidimensional
interpolation space. They also mention establishing a
multivariate function by solving a linear system of
equations. In [7] multivariate polynomials are used to

build a model for the geometrical parameters at a single
frequency and rational interpolation is used to combine
these polynomials to determine the entire interpolation
space.

This paper presents two new concepts to minimize the
number of support points needed to establish a good
model, one in terms of adaptive sampling and the other on
interpolation functions. The first is a novel adaptive
sampling algorithm for general multivariate interpolation,
based on a Thiele-type branched continued fraction
representation of a rational function. This is an extension
of a recently published adaptive sampling algorithm for
the univariate case [12], [13]. To enable more efficient
placement of support points, we propose a variation of the
standard branched continued fraction that uses
approximation to establish a non-rectangular grid of
support points. The sampling algorithm is fully automatic,
does not require any a priori knowledge of the microwave
structure under study, and makes no assumptions
concerning it. It does not require derivatives, is widely
applicable and is in no way restricted to the specific
examples shown here. The accuracy of the technique is
illustrated by a two-variable and a three-variable example,
with errors of smaller than 0.25 % being achieved in both
cases.

II. MULTIVARIATE RATIONAL INTERPOLATION

A multivariate rational function with complex variables
Yo Withd=1,2,--- D, is defined as:
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It can be constructed by calculating the explicit solution
of the system of interpolatory conditions, or by starting a
recursive algorithm, or by calculating the convergent of a
continued fraction [14]. The use of continued fractions as
interpolants is a computationally efficient method [15] and
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gives accurate numerical results [16], [17] and is therefore
used in this paper.

We represent (1) by a Thiele-type interpolating
branched continued fraction (BCF) as defined in (2). The
partial ~ denominators R, (¥, ¥+, ¥p |71")  are
multivariate functions, with one less variable than
R(Y1, Y2, ", ¥Yp) and are defined with y; constant and
equal to ") . Each partial denominator can be repeatedly
substituted by a continued fraction, similar to (2), until the
partial denominators become constants. These constants
are essentially the coefficients that define the multivariate
rational interpolant.

The coefficients of a univariate rational interpolant are
defined by a set of inverse differences of the CEM
response function that we are trying to model [18]. The
univariate interpolant is recursively evaluated using the
forward algorithm [19]. Similarly, for the multivariate case
the BCF can be evaluated using three-term recurrence
relations. Now sets of support points are combined to
define sets of univariate rational interpolation functions
with D-1 variables constant. The union of these univariate
interpolation functions then generates sets of bivariate
rational functions. Sets of bivariate functions combine to
form three-variable interpolation functions. The process is
repeated until a multivariate rational interpolation function
with D variables is determined.

It follows that the determination of the coefficients for
the multivariate interpolant is equivalent to the
determination of coefficients for a set of univariate
functions. These univariate functions are determined by
repeatedly applying a set of recurrence relations. The
general formulation requires that the support points be
placed on a fully filled rectangular grid. This constriction,
which is an inherent characteristic of BCFs, is not suited
for an adaptive sampling algorithm that requires the
freedom to choose arbitrary support points in the
interpolation space. Furthermore, we expect that a large
number of the support points in the grid are redundant. To
remove this constriction a variation of the standard BCF is
proposed where certain function values are replaced with
the previously determined interpolants for those functions.
The rectangularly spaced support points required by the
BCF can now effectively be calculated from non-
rectangularly spaced support points.
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II. ADAPTIVE SAMPLING ALGORITHM

The determination of an accurate multivariate rational
interpolant requires that enough support points, in the case
of microwave circuits, normally CEM analyses, be used.
In order to calculate the minimum number and the optimal
positions of these support points, adaptive sampling for
application to the rational function approximation is
applied. An estimate of the interpolation error is given by
the relative squared error between the current estimate of
the interpolant and the previous estimate of the interpolant
i.e. before adding the last support point. Starting with a
low order interpolant, the technique systematically
increases the order by optimally choosing new support
points in the areas of highest error, until the required
accuracy is achieved. The steps for the multivariate
adaptive sampling algorithm are as follows:

1. Using the univariate adaptive sampling algorithm [13],
determine a univariate model of each variable y, over
the interpolation interval, with all other variables set to
their midpoint values. In this way, D univariate
interpolants, each defined on a line crossing through
the center of the interpolation space, are determined.

2. Sort the variable positions in the multivariate
interpolant so that the orders N, of the interpolants
determined in step 1 decrease as d increases.

3. Initialize a model with a rectangular grid of support
points with three support points along every dimension.

4. Determine a multivariate rational interpolant from the
support points.

5. Select a dimension 7y, for selection of new support
points. Iterate ford=D,D-1, -, 1.

6. Select a new support point at the maximum of the
interpolation error function at y,,.

7. Renumber the support points so that N, decreases as d
increases.

8. Repeat steps 4 thru 8 until convergence.

II. EXAMPLES

The adaptive sampling algorithm is verified on a two-
variable and a three-variable example. To determine the
accuracy of the models, they have to be evaluated on an
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independent evaluation data set, similar to the validation
procedures applied to neural networks. In the following
examples, the relative squared error E, between the
function and the model on a 30 X 30 equi-spaced grid for
the bivariate case and on a 20 X 20 X 20 equi-spaced grid
for the trivariate case, was calculated. Both the maximum
and the mean errors in dB are shown for models of varying
size. None of these models were reduced in size after a fit
was obtained, in contrast to techniques where the order of
the interpolant is guessed beforehand, and the
interpolation function (calculated by a high number of
CEM analyses) is systematically reduced afterwards.

A. Stripline characteristic impedance

A bivariate model R(w/h,g,) was determined with the
adaptive sampling algorithm for the characteristic
impedance Zy(w/h,e;) of a homogeneous symmetric
stripline as shown in Fig. 1. The variables are: the strip
width-to-height ratio w/h and the relative dielectric
constant ¢ of the substrate. The strip conductor was
assumed infinitesimally thin. The model is determined for
the parameters w/he [0.05,1] and & € [1,25], which
define the interpolation space. At initialization, the 9
chosen support points produce R(w/h,e;) with the
maximum error equal to -16.4dB. Table I shows the
convergence of the interpolation model using the adaptive
sampling algorithm as the number of support points
increase. The response R(w/h,g;) of the interpolation
model with 29 support points and its relative error
E,(w/h,g,), which is less than —56 dB in the interpolation
space, are shown in Fig. 2 and Fig. 3 respectively.

TABLE 1
CONVERGENCE OF R(w/h, g) FOR THE STRIPLINE EXAMPLE

Number of E, (w/h,g.) [dB]
support points Mean Max
9 -29.3 -16.4
14 -33.0 —-18.5
21 —42.4 -29.1
29 —72.3 -56.9
TABLE 11
CONVERGENCE OF R,(f, a, b) FOR THE IRIS EXAMPLE
Number of E,(f,a, b) [dB]
support points Mean Max
168 -50.0 —-18.0
247 -56.9 -19.5
328 —63.2 -31.1
560 —66.5 -33.1
736 —72.7 —52.6
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Fig. 1.

Cross sectional view of the stripline.

Fig.2. Response of R(w/h, ;) with 29 support points for the
stripline example.
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Fig. 3.  E,(w/h,g) of R(w/h,g,) with 29 support points for the
stripline example.

B. Iris in rectangular waveguide

A trivariate model R, (f, a,b) was determined for the
transmission coefficient, i.e. S,(f,a,b) of an iris in a
rectangular waveguide as shown in Fig. 4. The variables
are: frequency f, gap width a and gap height b. The model
was determined for a standard WRO90 rectangular
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waveguide with fe [8 GHz, 12 GHz], ae [§ mm, 15 mm],
b e [1 mm, 3 mm] and /=1 mm. The iris is analyzed using
the mode matching method [20]. Table II shows the
results. An error of smaller than —52dB in the
interpolation space with 736 support points was achieved.
This represents excellent performance for a three variable
problem in the given interpolation space.

Fig. 4.

Iris in rectangular waveguide

V. CONCLUSION

A fast and efficient adaptive sampling algorithm for
multivariate rational interpolation based on the Thiele-type
branched continued fraction was presented. Accurate
surrogate models with errors of smaller than 0.25 % were
determined.

REFERENCES

[1] T. Dhaene, J. Ureel, N. Faché and D. de Zutter, “Adaptive
frequency sampling algorithm for fast and accurate S-
parameter modeling of general planar structures,” IEEE Int.
Microwave Symp. Dig., Orlando, FL, pp. 1427-1430, May
1995.

[2] J. Ureel, N. Faché¢, D. de Zutter and P. Lagasse, “Adaptive
frequency sampling of scattering parameters obtained by
electromagnetic simulation,” IEEE AP Symp., vol. 2, pp.
1162-1165, 1994.

[3] R.S. Adve, T. K. Sarkar, S. M. Rao, E. K. Miller and D. R.
Pflug, “Application of the Cauchy method for
extrapolating/interpolating narrow-band system responses,”
IEEE Trans. Microwave Theory Tech., vol. 45, no. 5, pp.
837-845, May 1997.

[4] G.J. Burke, E. K. Miller and S. Chakrabarti, “Using model-
based parameter estimation to increase the efficiency of
computing electromagnetic transfer functions,” IEEE Trans.
Mag., vol. 25, no. 4, pp. 2807-2809, Jul. 1989.

[5] E. K. Miller, “Model-based parameter estimation in
electromagnetics: I—Background  and  theoretical

development,” Applied Computational Electromagnetics
Society Newsletter, vol. 10, no. 3, pp. 40-63, Nov. 1995.

[6] E.K. Miller, “Minimizing the number of frequency samples
needed to represent a transfer function using adaptive
sampling,” 12" Annual Review of Progress in Applied
Computational  Electromagnetics, Naval Postgraduate
School, Monterey, CA, pp. 1132-1139, 1996.

[7] J. de Geest, T. Dhaene. N. Faché and D. de Zutter,
“Adaptive CAD-model building algorithm for general
planar microwave structures,” [EEE Trans. Microwave
Theory Tech., vol. 47, no. 9, pp. 1801-1809, Sep. 1999.

[8] D. H. Werner and R. J. Allard, “The simultaneous
interpolation of antenna radiation patterns in both the
spatial and frequency domains using model-based parameter
estimation,” [EEE Trans. Antennas Propagat., vol. 48, no.
3, pp. 383-392, Mar. 2000.

[91 S. F. Peik, R. R. Mansour and Y. L. Chow,
“Multidimensional Cauchy method and adaptive sampling
for an accurate microwave circuit modeling,” IEEE Trans.
Microwave Theory Tech., vol. 46, no. 12, pp. 2364-2371,
Dec. 1998.

[10] E. G. Kogbetliantz, “Generation of elementary functions,”
Mathematical methods for digital computers, A. Ralston
and H. S. Wilf (eds.), vol. 1, John Wiley & Sons, New
York, 1960.

[11] E. W. Cheney and T. H. Southard, “A survey of methods for
rational approximation, with particular reference to a new
method based on a formula of Darboux”, SIAM Rev., vol. 5,
no. 3, pp. 219-231, Jul. 1963.

[12] R. Lehmensiek and P. Meyer, “An efficient adaptive
frequency sampling algorithm for model-based parameter
estimation as applied to aggressive space mapping,”
Microwave Opt. Technol. Lett., vol. 24, no. 1, pp. 71-78,
Jan. 2000.

[13] R. Lehmensiek and P. Meyer, “Using efficient model-based
parameter estimation for pole-free solutions of modal
propagation constants, as applied to shielded planar
structures,”  Applied Computational Electromagnetics
Society Journal, to be published.

[14]A. A. M. Cuyt, “A review of multivariate Padé
approximation theory,” J. Comp. Appl. Math., vol. 12, pp.
221-232, 1985.

[15] P. R. Graves-Morris and T. R. Hopkins, “Reliable rational
interpolation”, Numer. Math., vol. 36, pp. 111-128, 1981.

[16] A. A. M. Cuyt and B. M. Verdonk, “Multivariate rational
interpolation,” Computing, vol. 34, pp. 41-61, 1985.

[17] A. Cuyt, “A recursive computational scheme for
multivariate rational interpolants,” SIAM J. Numer. Anal.,
vol. 24, no. 1, pp. 228-239, Feb. 1987.

[18] J. Stoer and R. Bulirsch, Introduction to numerical
analysis, Springer-Verlag, Berlin, 1980.

[19] G. Blanch, “Numerical evaluation of continued fractions”,
SIAM Rev., vol. 6, no. 4, pp. 383-421, Oct. 1964.

[20] T. Itoh (ed.), Numerical techniques for microwave and
millimeter-wave passive structures, John Wiley & Sons,
New York, 1989.

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



	Using efficient multivariate adaptive sampling by minimizing the number of computational electromagnetic analysis needed to establish accurate interpolation models
	
	(1) Reutech Radar Systems, Stellenbosch, 7600, South Africa�(2) Dept. of Electronic Engineering, University of Stellenbosch, Stellenbosch, 7600, South Africa
	A
	Abstract  —  An efficient multivariate adaptive sampling algorithm based on rational interpolation, that establishes accurate surrogate models of microwave circuits, is presented. The technique optimally samples the parameter space in order to minimize t
	I. Introduction
	II. Multivariate Rational Interpolation
	II. Adaptive Sampling Algorithm
	II. EXAMPLES
	References


	IMS 2001
	Return to Main Menu


