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Abstract  —  An efficient multivariate adaptive sampling 

algorithm based on rational interpolation, that establishes 
accurate surrogate models of microwave circuits, is 
presented. The technique optimally samples the parameter 
space in order to minimize the number of CEM analyses, 
without assuming any a priori knowledge of the data. The 
technique is evaluated on passive microwave structures. 

I. INTRODUCTION 

Microwave design incorporating optimization, Monte 
Carlo analysis or statistical CAD, relies on fast and 
accurate analyses or models of physical structures to be 
effective. Computational electromagnetic (CEM) analysis 
techniques normally provide high accuracy at the expense 
of computational effort, while circuit models are 
computationally very effective, but lack wide-band 
accuracy. Surrogate mathematical models, directly fitting 
data from CEM simulations, offer fast and accurate 
solutions to this problem, and are increasingly used in the 
design of microwave components. 

Surrogate interpolation models require only storage of 
the interpolant coefficients, and in addition normally 
require smaller data sets than either neural networks or 
look-up tables to establish a model. While polynomial 
interpolants are often used, rational functions yield better 
results for functions containing poles or for meromorphic 
functions [1]-[9]. Polynomial interpolation is prone to wild 
oscillations and an acceptable accuracy is sometimes 
achieved only by polynomials of intolerably high degree 
[10], [11]. 

The extension of univariate interpolation to multivariate 
interpolation is not trivial since a large degree of freedom 
in the choice for the numerator and denominator 
polynomials exists. Only a few multivariate sampling 
algorithms have been published. In [9] the authors use a 
rectangular grid of support points and recursive univariate 
interpolation to establish the multidimensional 
interpolation space. They also mention establishing a 
multivariate function by solving a linear system of 
equations. In [7] multivariate polynomials are used to 

build a model for the geometrical parameters at a single 
frequency and rational interpolation is used to combine 
these polynomials to determine the entire interpolation 
space. 

This paper presents two new concepts to minimize the 
number of support points needed to establish a good 
model, one in terms of adaptive sampling and the other on 
interpolation functions. The first is a novel adaptive 
sampling algorithm for general multivariate interpolation, 
based on a Thiele-type branched continued fraction 
representation of a rational function. This is an extension 
of a recently published adaptive sampling algorithm for 
the univariate case [12], [13]. To enable more efficient 
placement of support points, we propose a variation of the 
standard branched continued fraction that uses 
approximation to establish a non-rectangular grid of 
support points. The sampling algorithm is fully automatic, 
does not require any a priori knowledge of the microwave 
structure under study, and makes no assumptions 
concerning it. It does not require derivatives, is widely 
applicable and is in no way restricted to the specific 
examples shown here. The accuracy of the technique is 
illustrated by a two-variable and a three-variable example, 
with errors of smaller than 0.25 % being achieved in both 
cases. 

II. MULTIVARIATE RATIONAL INTERPOLATION 

A multivariate rational function with complex variables 
γ d, with d = 1, 2, ⋅ ⋅ ⋅ , D, is defined as: 
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It can be constructed by calculating the explicit solution 
of the system of interpolatory conditions, or by starting a 
recursive algorithm, or by calculating the convergent of a 
continued fraction [14]. The use of continued fractions as 
interpolants is a computationally efficient method [15] and 
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gives accurate numerical results [16], [17] and is therefore 
used in this paper. 

We represent (1) by a Thiele-type interpolating 
branched continued fraction (BCF) as defined in (2). The 
partial denominators )|,,,( )(
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multivariate functions, with one less variable than 
ℜ(γ 1 , γ 2 , ⋅ ⋅ ⋅ , γ D ) and are defined with γ1 constant and 
equal to )(

1
1iγ . Each partial denominator can be repeatedly 

substituted by a continued fraction, similar to (2), until the 
partial denominators become constants. These constants 
are essentially the coefficients that define the multivariate 
rational interpolant. 

The coefficients of a univariate rational interpolant are 
defined by a set of inverse differences of the CEM 
response function that we are trying to model [18]. The 
univariate interpolant is recursively evaluated using the 
forward algorithm [19]. Similarly, for the multivariate case 
the BCF can be evaluated using three-term recurrence 
relations. Now sets of support points are combined to 
define sets of univariate rational interpolation functions 
with D-1 variables constant. The union of these univariate 
interpolation functions then generates sets of bivariate 
rational functions. Sets of bivariate functions combine to 
form three-variable interpolation functions. The process is 
repeated until a multivariate rational interpolation function 
with D variables is determined. 

It follows that the determination of the coefficients for 
the multivariate interpolant is equivalent to the 
determination of coefficients for a set of univariate 
functions. These univariate functions are determined by 
repeatedly applying a set of recurrence relations. The 
general formulation requires that the support points be 
placed on a fully filled rectangular grid. This constriction, 
which is an inherent characteristic of BCFs, is not suited 
for an adaptive sampling algorithm that requires the 
freedom to choose arbitrary support points in the 
interpolation space. Furthermore, we expect that a large 
number of the support points in the grid are redundant. To 
remove this constriction a variation of the standard BCF is 
proposed where certain function values are replaced with 
the previously determined interpolants for those functions. 
The rectangularly spaced support points required by the 
BCF can now effectively be calculated from non-
rectangularly spaced support points. 

II. ADAPTIVE SAMPLING ALGORITHM 

The determination of an accurate multivariate rational 
interpolant requires that enough support points, in the case 
of microwave circuits, normally CEM analyses, be used. 
In order to calculate the minimum number and the optimal 
positions of these support points, adaptive sampling for 
application to the rational function approximation is 
applied. An estimate of the interpolation error is given by 
the relative squared error between the current estimate of 
the interpolant and the previous estimate of the interpolant 
i.e. before adding the last support point. Starting with a 
low order interpolant, the technique systematically 
increases the order by optimally choosing new support 
points in the areas of highest error, until the required 
accuracy is achieved. The steps for the multivariate 
adaptive sampling algorithm are as follows: 

 
1. Using the univariate adaptive sampling algorithm [13], 

determine a univariate model of each variable γd over 
the interpolation interval, with all other variables set to 
their midpoint values. In this way, D univariate 
interpolants, each defined on a line crossing through 
the center of the interpolation space, are determined. 

2. Sort the variable positions in the multivariate 
interpolant so that the orders Nd of the interpolants 
determined in step 1 decrease as d increases. 

3. Initialize a model with a rectangular grid of support 
points with three support points along every dimension. 

4. Determine a multivariate rational interpolant from the 
support points. 

5. Select a dimension γd for selection of new support 
points. Iterate for d = D, D-1, ⋅ ⋅ ⋅ , 1. 

6. Select a new support point at the maximum of the 
interpolation error function at γd. 

7. Renumber the support points so that Nd decreases as d 
increases. 

8. Repeat steps 4 thru 8 until convergence. 

II. EXAMPLES 

The adaptive sampling algorithm is verified on a two-
variable and a three-variable example. To determine the 
accuracy of the models, they have to be evaluated on an 
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independent evaluation data set, similar to the validation 
procedures applied to neural networks. In the following 
examples, the relative squared error Em between the 
function and the model on a 30×30 equi-spaced grid for 
the bivariate case and on a 20×20×20 equi-spaced grid 
for the trivariate case, was calculated. Both the maximum 
and the mean errors in dB are shown for models of varying 
size. None of these models were reduced in size after a fit 
was obtained, in contrast to techniques where the order of 
the interpolant is guessed beforehand, and the 
interpolation function (calculated by a high number of 
CEM analyses) is systematically reduced afterwards. 

A. Stripline characteristic impedance 

A bivariate model ℜ(w/h,εr ) was determined with the 
adaptive sampling algorithm for the characteristic 
impedance Z0(w/h,εr ) of a homogeneous symmetric 
stripline as shown in Fig. 1. The variables are: the strip 
width-to-height ratio w/h and the relative dielectric 
constant εr of the substrate. The strip conductor was 
assumed infinitesimally thin. The model is determined for 
the parameters w/h ∈ [0.05, 1] and εr ∈ [1, 25], which 
define the interpolation space. At initialization, the 9 
chosen support points produce ℜ(w/h,εr ) with the 
maximum error equal to -16.4 dB. Table I shows the 
convergence of the interpolation model using the adaptive 
sampling algorithm as the number of support points 
increase. The response ℜ(w/h,εr ) of the interpolation 
model with 29 support points and its relative error 
Em(w/h,εr ), which is less than –56 dB in the interpolation 
space, are shown in Fig. 2 and Fig. 3 respectively. 

 

w 
 

h 
 εr 

 

 
Fig. 1. Cross sectional view of the stripline. 

 

 
Fig. 2. Response of ℜ(w/h,εr ) with 29 support points for the 
stripline example. 

 

 
Fig. 3. Em(w/h,εr ) of ℜ(w/h,εr ) with 29 support points for the 
stripline example. 
 

B. Iris in rectangular waveguide 

A trivariate model ℜ21(f, a, b) was determined for the 
transmission coefficient, i.e. S21(f, a, b) of an iris in a 
rectangular waveguide as shown in Fig. 4. The variables 

T
CONVERGENCE OF ℜ(w/h

Number of 
support points 

9 
14 
21 
29 

 
T

CONVERGENCE OF ℜ21

Number of 
support points 

168 
247 
328 
560 
736 

 

ABLE I 
, εr) FOR THE STRIPLINE EXAMPLE 

Em(w/h,εr) [dB] 
Mean Max 
−29.3 −16.4 
−33.0 −18.5 
−42.4 −29.1 
−72.3 −56.9 

ABLE II 
(f, a, b) FOR THE IRIS EXAMPLE 

E21(f, a, b) [dB] 
Mean Max 
−50.0 −18.0 
−56.9 −19.5 
−63.2 −31.1 
−66.5 −33.1 
−72.7 −52.6 
are: frequency f, gap width a and gap height b. The model 
was determined for a standard WR90 rectangular 
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waveguide with f ∈ [8 GHz, 12 GHz], a ∈ [8 mm, 15 mm], 
b ∈ [1 mm, 3 mm] and l = 1 mm. The iris is analyzed using 
the mode matching method [20]. Table II shows the 
results. An error of smaller than –52 dB in the 
interpolation space with 736 support points was achieved. 
This represents excellent performance for a three variable 
problem in the given interpolation space. 

 
 

l 

a 
b 

 
Fig. 4. Iris in rectangular waveguide 

V. CONCLUSION 

A fast and efficient adaptive sampling algorithm for 
multivariate rational interpolation based on the Thiele-type 
branched continued fraction was presented. Accurate 
surrogate models with errors of smaller than 0.25 % were 
determined. 
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